Background	The theorem	Ingredients of the proof	Picturing the structures	Further work	References
000	0	0000	00	00	

Counting substructures of highly symmetric structures

Samuel Braunfeld

University of Maryland, College Park Charles University, Prague

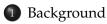
British Combinatorial Conference

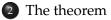
July 9, 2021

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ . □ ● . ○ < ○

Background	The theorem	Ingredients of the proof	Picturing the structures	Further work	References
000	0	0000	00	00	

OVERVIEW





- Ingredients of the proof
- Picturing the structures
- 5 Further work

Background	The theorem	Ingredients of the proof	Picturing the structures	Further work	References
•00 ⁻	0	0000	00	00	

COUNTING ORBITS

- In the 1970s, Peter Cameron starting counting orbits for a group acting on a countable set.
- An action of *G* on a set *X* induces an action elementwise on the set of *n*-subsets for each *n* ∈ N.
- The *growth rate* of the action, denoted *f*_{*G*}(*n*), counts the orbits on *n*-subsets for each *n*.
- For the rest of the talk, we will assume $f_G(n)$ is always finite.

• See [3] for a survey.

Background 0●0	The theorem 0	Ingredients of the proof 0000	Picturing the structures	Further work 00	References

COUNTING SUBSTRUCTURES

- Given *G* acting on *X* as in the previous slide, we may find a relational structure *M* such that the action of *G* on *X* is (essentially) the same as the action of *Aut*(*M*) on *M*.
- Furthermore, *M* is *homogeneous*, i.e. every isomorphism between finite substructures extends to an automorphism of *M*.
- Then $f_G(n) = f_{Aut(M)}(n)$ also counts the number of (unlabelled) substructures of *M* of size *n*, up to isomorphism.
- We will use $f_M(n)$ in place of $f_{Aut(M)}(n)$.
- Main thesis: Slow growth rate should correspond to structural simplicity of *M*.

Background 00●	The theorem 0	Ingredients of the proof 0000	Picturing the structures	Further work 00	References

EXAMPLES

- Given a structure M, we let C_M be the class of finite substructures of M.
- $M = (\mathbb{Q}, \leq)$. Then C_M is the class of finite linear orders, and $f_M(n) \equiv 1$.
- *M* is a structure whose domain is partitioned into two unary relations. Then C_M consists of finite structures whose domain is split into red and blue points, and $f_M(n) = n$.
- *M* is an equivalence relation with infinitely many classes, each infinite. Then C_M is the class of finite partitions, and $f_M(n) \approx e^{\sqrt{n}}$.
- C_M consists of the leaves of full binary trees, and $f_M(n) = Catalan(n-1) \approx 4^n$.
- C_M consists of all finite graphs, and $f_M(n) \approx 2^{n^2/2}$.

Background	The theorem	Ingredients of the proof	Picturing the structures	Further work	References
000	•	0000	00	00	

THE MAIN THEOREM

 We give a detailed description of spectrum of growth rates slower than every exponential (in fact slower than φⁿ), confirming some conjectures of Peter Cameron and Dugald Macpherson.

Theorem ([2])

Let *M* be a countable homogeneous structure. If $f_M(n) = o\left(\frac{\phi^n}{poly(n)}\right)$ for every polynomial (with $\phi \approx 1.618$), then $f_M(n) = o(c^n)$ for every c > 1. Furthermore, one of the following holds.

- There are c > 0, $k \in \mathbb{N}$ such that $f_M(n) \sim cn^k$.
- There are $c > 0, k \in \mathbb{N}$ such that $f_M(n) = e^{\left(\Theta\left(n^{1-\frac{1}{k}}\right)\right)}$.

• Let $\log^{r}(n)$ denote the *r*-fold iterated logarithm. There are c > 0and $k, r \in \mathbb{N}$ such that $f_{M}(n) = e^{\left(\Theta\left(\frac{n}{(\log^{r}(n))^{1/k}}\right)\right)}$.

Background 000	The theorem 0	Ingredients of the proof ●000	Picturing the structures	Further work 00	References

STABILITY

- Originally defined for asymptotic enumeration of classes of infinite structures.
- A structure *M* is *stable* if it does not encode an infinite linear order, or equivalently, does not encode an infinite half-graph.

- What does "encode" mean?
- (Roughly) an induced subgraph of a graph definable from *M*.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Background 000	The theorem 0	Ingredients of the proof ○●○○	Picturing the structures	Further work 00	References

REDUCING TO THE STABLE CASE

Theorem (Simon, 2018)

If M has growth rate slower than ϕ^n , then there is a stable structure M^* with the same growth rate.

- *M*^{*} is obtained by "forgetting" the orders on *M*.
- For example, if $M = (\mathbb{Q}, \leq)$, then $M^* = (\mathbb{Q}, =)$, and $f_M(n) = f_{M^*}(n) \equiv 1$.
- Stable structures are well-understood, and in particular have a well-behaved notion of independence.
- For example, linear independence in vector spaces, or "being in different connected components" in graphs of bounded degree.

Background T 000 C	he theorem Ingredier	nts of the proof Picturing the s	structures Further v 00	vork References

MONADIC STABILITY

- *M* is *monadically stable* if it remains stable after an arbitrary coloring of its elements, with any number of colors.
- This can be characterized by behavior of the independence relation.
- If *M* is stable but not monadically stable, it encodes arbitrary bipartite graphs after a coloring, so has superexponential growth rate.
- Proof: Use the independence relation to find a grid.

Background 000	The theorem 0	Ingredients of the proof	Picturing the structures	Further work 00	References

MONADIC STABILITY CONTD.

- If *M* is monadically stable, then the independence relation is very well behaved.
- So *M* can be decomposed into a tree of substructures, which are all relatively independent from each other.
- This is similar to tree-decompositions in structural graph theory.
- Simple example: Decomposing a bounded-degree graph into connected components.
- Using this, Lachlan classified the homogeneous monadically stable structures.
- Their growth rates can be estimated fairly directly.

 Background
 The theorem
 Ingredients of the proof
 Picturing the structures
 Further work
 References

 000
 0
 000
 00
 00
 00

STRUCTURES WITH POLYNOMIAL GROWTH

• A structure has *depth 1* if it consists of infinitely many copies of a finite structure.

Figure: A depth 1 graph

• We also allow uniform interaction between copies, and a finite exceptional set.

Figure: Another depth 1 graph

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

STRUCTURES WITH SUBEXPONENTIAL GROWTH

- A structure has *depth* 2 if consists of infinitely many copies of a depth 1 structure, with limited, uniform interaction between copies.
- Example: An equivalence relation with infinitely many classes, each infinite.
- This can be iterated to define depth *d*.
- Depth 2 corresponds to growth $f_M(n) = e^{\left(\Theta\left(n^{1-\frac{1}{k}}\right)\right)}$.
- Depth $d \ge 3$ corresponds to growth

$$f_M(n) = e^{\left(\Theta\left(\frac{n}{\left(\log^{d-2}(n)\right)^{1/k}}\right)\right)}.$$

• So growth rates are stratified by depth.

Background 000	The theorem 0	Ingredients of the proof 0000	Picturing the structures	Further work ●○	References

THE EXPONENTIAL RANGE

- The next natural range is if $f_M(n) = o(c^n)$ for some $c \in \mathbb{R}$.
- Here we expect the structures to be "tree-like".
- We say *M* is *NIP* if it does not encode arbitrary bipartite graphs (this is very closely related to bounded VC-dimension), and *monadically NIP* if it remains NIP after an arbitrary coloring of its elements.

Conjecture

Let M be a countable homogeneous structure, and C_M its class of finite substructures. Then the following are equivalent.

- *M is monadically NIP.*
- $f_M(n) = o(c^n)$ for some $c \in \mathbb{R}$.
- **(5)** C_M has no infinite antichains under embeddability.
- C_M is algorithmically tractable.

• See recent work on twin-width and sparse graph classes.

Sac

Background	The theorem	Ingredients of the proof	Picturing the structures	Further work	References
000	0	0000	00	0.	

BEYOND HOMOGENEITY

Question

What can we prove if the homogeneity assumption is removed? What about arbitrary hereditary classes?

Conjecture

Let C be a hereditary class of (unlabelled) structures in a finite relational language, and let C_n be the subclass of structures of size n. Either $|C_n| \sim cn^k$ for some $c \in \mathbb{R}$ and $k \in \mathbb{N}$, or $|C_n|$ grows at least as fast as the partition function.

• This conjecture is known for hereditary graph classes [1].

Background	The theorem	Ingredients of the proof	Picturing the structures	Further work	References
000	0	0000	00	00	

References I

- József Balogh, Béla Bollobás, Michael Saks, and Vera T Sós, *The unlabelled speed of a hereditary graph property*, Journal of Combinatorial Theory, Series B **99** (2009), no. 1, 9–19.
- [2] Samuel Braunfeld, Monadic stability growth rates of ω -categorical structures, arXiv preprint arXiv:1910.04380 (2019).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

[3] Peter J Cameron, *Oligomorphic permutation groups*, Perspectives in mathematical sciences II: Pure mathematics, 2009, pp. 37–61.