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COUNTING ORBITS

In the 1970s, Peter Cameron starting counting orbits for a
group acting on a countable set.
An action of G on a set X induces an action elementwise on
the set of n-subsets for each n ∈ N.
The growth rate of the action, denoted fG(n), counts the
orbits on n-subsets for each n.
For the rest of the talk, we will assume fG(n) is always finite.
See [3] for a survey.



Background The theorem Ingredients of the proof Picturing the structures Further work References

COUNTING SUBSTRUCTURES

Given G acting on X as in the previous slide, we may find a
relational structure M such that the action of G on X is
(essentially) the same as the action of Aut(M) on M.
Furthermore, M is homogeneous, i.e. every isomorphism
between finite substructures extends to an automorphism of
M.
Then fG(n) = fAut(M)(n) also counts the number of
(unlabelled) substructures of M of size n, up to
isomorphism.
We will use fM(n) in place of fAut(M)(n).
Main thesis: Slow growth rate should correspond to
structural simplicity of M.
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EXAMPLES

Given a structure M, we let CM be the class of finite
substructures of M.
M = (Q,≤). Then CM is the class of finite linear orders, and
fM(n) ≡ 1.
M is a structure whose domain is partitioned into two unary
relations. Then CM consists of finite structures whose
domain is split into red and blue points, and fM(n) = n.
M is an equivalence relation with infinitely many classes,
each infinite. Then CM is the class of finite partitions, and
fM(n) ≈ e

√
n.

CM consists of the leaves of full binary trees, and
fM(n) = Catalan(n− 1) ≈ 4n.

CM consists of all finite graphs, and fM(n) ≈ 2n2/2.
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THE MAIN THEOREM
We give a detailed description of spectrum of growth rates
slower than every exponential (in fact slower than φn),
confirming some conjectures of Peter Cameron and Dugald
Macpherson.

Theorem ([2])

Let M be a countable homogeneous structure. If fM(n) = o
(

φn

poly(n)

)
for every polynomial (with φ ≈ 1.618), then fM(n) = o(cn) for every
c > 1. Furthermore, one of the following holds.

1 There are c > 0, k ∈ N such that fM(n) ∼ cnk.

2 There are c > 0, k ∈ N such that fM(n) = e

(
Θ

(
n1− 1

k

))
.

3 Let logr(n) denote the r-fold iterated logarithm. There are c > 0

and k, r ∈ N such that fM(n) = e

(
Θ

(
n

(logr(n))1/k

))
.
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STABILITY
Originally defined for asymptotic enumeration of classes of
infinite structures.
A structure M is stable if it does not encode an infinite linear
order, or equivalently, does not encode an infinite
half-graph.
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What does “encode” mean?
(Roughly) an induced subgraph of a graph definable from
M.
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REDUCING TO THE STABLE CASE

Theorem (Simon, 2018)
If M has growth rate slower than φn, then there is a stable structure
M∗ with the same growth rate.

M∗ is obtained by “forgetting” the orders on M.
For example, if M = (Q,≤), then M∗ = (Q,=), and
fM(n) = fM∗(n) ≡ 1.
Stable structures are well-understood, and in particular
have a well-behaved notion of independence.
For example, linear independence in vector spaces, or
“being in different connected components” in graphs of
bounded degree.
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MONADIC STABILITY

M is monadically stable if it remains stable after an arbitrary
coloring of its elements, with any number of colors.
This can be characterized by behavior of the independence
relation.
If M is stable but not monadically stable, it encodes
arbitrary bipartite graphs after a coloring, so has
superexponential growth rate.
Proof: Use the independence relation to find a grid.
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MONADIC STABILITY CONTD.

If M is monadically stable, then the independence relation is
very well behaved.
So M can be decomposed into a tree of substructures, which
are all relatively independent from each other.
This is similar to tree-decompositions in structural graph
theory.
Simple example: Decomposing a bounded-degree graph
into connected components.
Using this, Lachlan classified the homogeneous
monadically stable structures.
Their growth rates can be estimated fairly directly.
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STRUCTURES WITH POLYNOMIAL GROWTH
A structure has depth 1 if it consists of infinitely many copies
of a finite structure.
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Figure: A depth 1 graph

We also allow uniform interaction between copies, and a
finite exceptional set.
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Figure: Another depth 1 graph
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STRUCTURES WITH SUBEXPONENTIAL GROWTH

A structure has depth 2 if consists of infinitely many copies
of a depth 1 structure, with limited, uniform interaction
between copies.
Example: An equivalence relation with infinitely many
classes, each infinite.
This can be iterated to define depth d.

Depth 2 corresponds to growth fM(n) = e

(
Θ

(
n1− 1

k

))
.

Depth d ≥ 3 corresponds to growth

fM(n) = e

Θ

 n

(logd−2(n))
1/k


.

So growth rates are stratified by depth.
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THE EXPONENTIAL RANGE
The next natural range is if fM(n) = o(cn) for some c ∈ R.
Here we expect the structures to be “tree-like”.
We say M is NIP if it does not encode arbitrary bipartite
graphs (this is very closely related to bounded
VC-dimension), and monadically NIP if it remains NIP after
an arbitrary coloring of its elements.

Conjecture
Let M be a countable homogeneous structure, and CM its class of finite
substructures. Then the following are equivalent.

1 M is monadically NIP.
2 fM(n) = o(cn) for some c ∈ R.
3 CM has no infinite antichains under embeddability.
4 CM is algorithmically tractable.

See recent work on twin-width and sparse graph classes.
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BEYOND HOMOGENEITY

Question
What can we prove if the homogeneity assumption is removed? What
about arbitrary hereditary classes?

Conjecture
Let C be a hereditary class of (unlabelled) structures in a finite
relational language, and let Cn be the subclass of structures of size n.
Either |Cn| ∼ cnk for some c ∈ R and k ∈ N, or |Cn| grows at least as
fast as the partition function.

This conjecture is known for hereditary graph classes [1].
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