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@ In the 1970s, Peter Cameron starting counting orbits for a
group acting on a countable set.
@ An action of G on a set X induces an action elementwise on
the set of n-subsets for each n € N.
@ The growth rate of the action, denoted f; (1), counts the
orbits on n-subsets for each n.

@ For the rest of the talk, we will assume f(n) is always finite.
@ See [3] for a survey.
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COUNTING SUBSTRUCTURES

@ Given G acting on X as in the previous slide, we may find a
relational structure M such that the action of G on X is
(essentially) the same as the action of Aut(M) on M.

e Furthermore, M is homogeneous, i.e. every isomorphism
between finite substructures extends to an automorphism of
M.

@ Then fg(1) = faurmy(n) also counts the number of
(unlabelled) substructures of M of size n, up to
isomorphism.

e We will use fu1(n) in place of fa,¢a) (1)

@ Main thesis: Slow growth rate should correspond to
structural simplicity of M.
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EXAMPLES

@ Given a structure M, we let Cy; be the class of finite
substructures of M.

@ M = (Q, <). Then Cy is the class of finite linear orders, and
fu(n) =1.

@ M is a structure whose domain is partitioned into two unary
relations. Then Cj; consists of finite structures whose
domain is split into red and blue points, and fy;(n) = n.

@ M is an equivalence relation with infinitely many classes,
each infinite. Then Cy is the class of finite partitions, and
fm(n) = eV,

@ Cy consists of the leaves of full binary trees, and
fm(n) = Catalan(n — 1) ~ 4".

@ Cy consists of all finite graphs, and fy(n) ~ 212,
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THE MAIN THEOREM

@ We give a detailed description of spectrum of growth rates
slower than every exponential (in fact slower than ¢"),
confirming some conjectures of Peter Cameron and Dugald
Macpherson.

Let M be a countable homogeneous structure. If fr(n) = o (ﬁ%)

for every polynomial (with ¢ ~ 1.618), then fy1(n) = o(c") for every
¢ > 1. Furthermore, one of the following holds.

@ Therearec > 0, k € N such that fy(n) ~ cnk.

(o(1)
@ Therearec > 0, k € Nsuch that fyr(n) =e .
© Let log'(n) denote the r-fold iterated logarithm. There are ¢ > 0

and k, r € N such that fyr(n) = e(e(“"g’&))”k)).
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@ Originally defined for asymptotic enumeration of classes of
infinite structures.

@ A structure M is stable if it does not encode an infinite linear
order, or equivalently, does not encode an infinite
half-graph.

=

@ What does “encode” mean?
@ (Roughly) an induced subgraph of a graph definable from
M.
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REDUCING TO THE STABLE CASE

M* with the same growth rate.

If M has growth rate slower than ¢", then there is a stable structure

@ M is obtained by “forgetting” the orders on M.
@ For example, if M = (Q, <), then M*

fm(1) = far-(n)

< =(Q,=),and
=1.

@ Stable structures are well-understood, and in particular
have a well-behaved notion of independence.

@ For example, linear independence in vector spaces, or

“being in different connected components” in graphs of
bounded degree.
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MONADIC STABILITY

@ M is monadically stable if it remains stable after an arbitrary
coloring of its elements, with any number of colors.

@ This can be characterized by behavior of the independence
relation.

e If M is stable but not monadically stable, it encodes
arbitrary bipartite graphs after a coloring, so has
superexponential growth rate.

@ Proof: Use the independence relation to find a grid.
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MONADIC STABILITY CONTD.

e If M is monadically stable, then the independence relation is
very well behaved.

@ So M can be decomposed into a tree of substructures, which
are all relatively independent from each other.

@ This is similar to tree-decompositions in structural graph
theory.

@ Simple example: Decomposing a bounded-degree graph
into connected components.

@ Using this, Lachlan classified the homogeneous
monadically stable structures.

@ Their growth rates can be estimated fairly directly.
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STRUCTURES WITH POLYNOMIAL GROWTH

@ A structure has depth 1 if it consists of infinitely many copies
of a finite structure.

Figure: A depth 1 graph

@ We also allow uniform interaction between copies, and a
finite exceptional set

Figure: Another depth 1 graph
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STRUCTURES WITH SUBEXPONENTIAL GROWTH

@ A structure has depth 2 if consists of infinitely many copies
of a depth 1 structure, with limited, uniform interaction
between copies.

@ Example: An equivalence relation with infinitely many
classes, each infinite.

@ This can be iterated to define depth d.

(o(*))
@ Depth 2 corresponds to growth fy(n) = e .
@ Depth d > 3 corresponds to growth

(o)
fu(n) =e (st =20) .

@ So growth rates are stratified by depth.
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THE EXPONENTIAL RANGE
@ The next natural range is if fy;(1) = o(c") for some c € R.
@ Here we expect the structures to be “tree-like”.
@ We say M is NIP if it does not encode arbitrary bipartite
graphs (this is very closely related to bounded

VC-dimension), and monadically NIP if it remains NIP after
an arbitrary coloring of its elements.

Let M be a countable homogeneous structure, and Cy; its class of finite
substructures. Then the following are equivalent.

Q@ M is monadically NIP.

@ fu(n) =o(c") for some c € R.

© Cu has no infinite antichains under embeddability.
Q Cw is algorithmically tractable.

@ See recent work on twin-width and sparse graph classes.
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What can we prove if the homogeneity assumption is removed? What
about arbitrary hereditary classes?

Let C be a hereditary class of (unlabelled) structures in a finite

relational language, and let C,, be the subclass of structures of size n.

Either |Cy| ~ cn* for some c € Rand k € N, or |C,| grows at least as
fast as the partition function.

@ This conjecture is known for hereditary graph classes [1].
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